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[A] Extraction of the learning-based paradigmatic and syntagmatic covariates 
 
We derived paradigmatic and syntagmatic covariates using the Naïve Discrimination Learning 
(NDL) algorithm, which builds on a theory of learning that is anchored in the equations for error-
correction learning proposed by Rescorla and Wagner (1972); these equations are effectively 
identical to the Widrow-Hoff or Delta rule (Widrow & Hoff, 1960; Rescorla, 2008 explains the 
relationship). The Rescorla-Wagner rule is also related to the Perceptron (Rosenblatt, 1962), but 
it is simpler in that it uses total or net input as the strength of activation of an output unit rather 
than sigmoid squashing or a similar procedure for normalisation. Several studies on language 
acquisition have shown that the Rescorla-Wagner model is predicts human behaviour well 
across various language-related tasks and problems (e.g., Ellis, 2006a; Ellis, 2006b; Baayen et 
al., 2011; Arnon & Ramscar, 2012; Ramscar et al., 2013; Milin et al., 2017; Divjak et al., 2020). 

The Rescorla-Wagner rule learns to associate learning cues and outcomes iteratively, in 
discrete time steps when new information is presented. If we let ! denote the set of " possible 
input cues, and let # denote the set of $ possible outputs, a Rescorla-Wagner learning network 
will be defined by an " × $ associative weight matrix, given " cues and $ outcomes. Weights are 
adjusted or updated for each discrete learning event on which a subset of all possible cues and 
outcomes will be present. The weights update is defined as: 
 

&!"#$ = &!" + ∆&!"  
 
with the change in weight, ∆&!, which updates the weight, &!  as new information arrives (* + 1). 
How the change in weight, ∆&!  is calculated, is defined by the Rescorla-Wagner equations: 
 

(1) The cue is ABSENT nothing happens Δ&!"#$ = 0  
(2) The cue is PRESENT; 

The outcome is 
PRESENT 

positive evidence that should 
strengthen the connection weight  Δ&!"#$ = ./1 − ∑&!"2!3  

(3) The cue is PRESENT; 
The outcome is ABSENT 

negative evidence that should 
weaken the connection weight 

Δ&!"#$ = ./0 − ∑&!"2!3  

 
The weight update depends on all cues, 2!, present at the event in time *, and the learning 

rate, ., which is the only free-parameter (compare Rescorla & Wagner, 1972 vs. Widrow & Hoff, 
1960 or see the summary in Milin et al., 2020). The error that is corrected iteratively is defined as 
the difference between the target or the truth – the outcome is present (1) or absent (0) – and the 
current state of knowledge, which is the weighted sum of present cues (∑&!"2!). 
 
For the present training, we made use of the Rescorla-Wagner rule implementation in the pyndl 
library (Sering et al., 2017) for Python (v. 3.x), and data from the srWaC corpus (Ljubešić & 
Klubička, 2016). The data pre-processing included removing punctuation, all non-Serbian 
characters (to filter out non-Serbian words), and lowercasing all words. The final dataset for 
training included 780,404,835 word tokens across 40,878,185 sentences. 



Two models were trained. The orthographic model (G2F) was trained on letter triplets and 
used chunks of three consecutive words as learning event; all attested letter triplets served as 
input cues and the word in the middle served as outcome. The lexical model (F2F) was trained on 
words and used two preceding words and one following word as learning events, with the target 
word as the third word in the sequence (a moving window). For example, for the sentence “One 
of these days all the boys and girls will finally meet” a typical G2F learning event would be “and 
girls will”, with letter triplets (trigraphs) as orthographic cues “#an, and, nd#, d#g, #gi, gir, irl, rls, 
ls#, s#w, #wi, wil, ill, ll#” and with the middle word “girls” as the outcome (note that the hash 
symbol replaces word boundaries). For the F2F lexical model, an event would be “boys and girls 
will”, with the outcome again being “girls”, and with cues “boys and” (the two preceding words) 
and "will" (the one following word). In cases where an outcome would occupy the initial position 
in a sentence, no preceding context would be available; similarly, the final word in a sentence 
would lack learning cues that would follow that word. To follow up on the example above, small 
sections of the two resulting matrices, with cues in rows and outcomes in columns, could look 
as follows: 
 

 boys girls finally time    boys girls finally time  

#an 
-

0.016 
-

0.016 
-

0.062 
-

0.009 
××× 

 
boys 0.000 0.003 

-
0.002 

0.004 ××× 

and 0.051 0.022 0.037 
-

0.027 
××× 

 
girls 

-
0.001 

0.000 
-

0.009 
0.000 ××× 

nd# 
-

0.059 
-

0.002 
0.006 0.039 ××× 

 
finally 

-
0.003 

0.009 0.000 0.008 ××× 

 ××× ××× ××× ××× ×××   ××× ××× ××× ××× ××× 

ill 
-

0.018 
0.065 0.019 

-
0.061 

××× 
 

time 0.000 0.002 
-

0.008 
0.000 ××× 

ll# 
-

0.001 
-

0.034 
-

0.016 
-

0.058 
××× 

 
age 

-
0.002 

0.005 
-

0.008 
0.007 ××× 

 ××× ××× ××× ××× ×××   ××× ××× ××× ××× ××× 
 

On the left, we see a portion of the orthographic learning model (G2F), trained on letter 
triplets as input cues and word forms as outcomes. This model provides two indicators of 
paradigmatic relationships: TrigraphActivation, a measure of orthographic support for a target 
word, and TrigraphCompetition, a measure of competition among orthographically similar 
words. For an example sequence of three words (“and girls will”) with their respective letter 
triplets (“#an, and, nd#, d#g, #gi, gir, irl, rls, ls#, s#w, #wi, wil, ill, ll#”), TrigraphActivation is 
calculated as the sum of weights in the target word's column (“girls”) across the 14 input cues 
present. In contrast, TrigraphCompetition sums the absolute values of all weights in the rows 
corresponding to the same 14 cues. In essence, TrigraphCompetition quantifies orthographic 
competition as the absolute vector length (1-norm), capturing the extent to which other words 
are relevant given the visual input. 

The lexical learning model (F2F) is illustrated on the right. Here, the matrix yields six 
potential measures of syntagmatic relationships. ActivationToContext reflects the activation the 
target word provides to other words in context, analogous to word2vec’s Skip-Gram, and is 
calculated as the 1-norm of the target word’s row (a cue). ActivationFromContext, similar to 
word2vec’s CBOW, is the 1-norm of the target word’s column (an outcome). The remaining four 



predictors capture relational properties. Two of these, SimilarityToContext and 
SimilarityFromContext, indicate the relationships between the prime and target nouns. They are 
quantified as cosine similarity between row- and column-based vectors for the respective prime 
and target nouns. The final two predictors, TypicalityToContext and TypicalityFromContext, 
measure how (non)exceptional the target word is compared to an “average word”. These are 
calculated as cosine similarity between the target noun's row and column vectors and the 
weight-average vectors across all rows and columns, respectively. 
 
NOTE: Large pretrained NDL matrices for English and Polish are freely available at 
https://outofourminds.bham.ac.uk/cloudcomputing/. Extracting static word embeddings (vectors of 
50–1000 elements) is straightforward, as explained on the website, and additional languages will be 
added. 
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