# 76-81 GHz Radar Sea Surface and Maritime Target Measurements

## Trial Purpose

The purpose of the described maritime radar trials was to conduct imaging radar measurements of sea surface clutter/reflections and targets of opportunity in the 76-81 GHz frequency band. This is the first part of the University of Birmingham data collection for the EPSRC funded STREAM project.

EP/S033238/1 Sub-THz Radar sensing of the Environment for future Autonomous Marine platforms

## **Repository Overview**

Due to extremely large files sizes (~6 GB per file), neither the full raw radar data files nor full preprocessed radar imagery data files can be included. Example data is however included and the full dataset is described and may be available on request.

## Measurement Description

### Measurement Types

Two types of radar data collection measurements were conducted, azimuth scanned imaging measurements (Figure 1) and staring measurements (Figure 2). Corner reflector and noise calibration measurements have also been conducted.

All scanning measurements covered a field-of-view (FoV) of 60° and chirps are transmitted with constant angular separation across the FoV. Both scanned and staring measurement types used the same fan beam imaging antennas.

Details of the scanned and staring measurements parameters, i.e. number of chirps etc. can be found in the **dataset description** section, details of the radar hardware use can be found in the **radar** hardware configuration section.

Details of any targets and important information within the measurements are also found in the dataset description.



A ZED stereo video camera was used to provide ground truth to radar data/imagery.

Figure 1. Example of scanned radar imagery PPI and ground truth video data (file:sea\_13).





Figure 2. Example of time series of range profiles formed from multiple chirps from a staring measurement, with corresponding ground truth (file:stare\_4)

### Measurement Site and Scene

The measurement site was located on Ferry Road, Southsea, Portsmouth, PO4 9LY, U.K., looking across Langstone Harbour towards Hayling Island. GPS Coordinates: 50° 47' 40.4772'' N, 1° 1' 46.0596'' W.

A Google Map plan view of the trials site can be found in Figure 3. A panoramic photo of the test area of sea surface is found in Figure 4.



Figure 3. Google Map view of trials site, radar is positioned on Westerly side of harbour entrance looking in an Easterly direction.



Figure 4. Panoramic view of the test scene

The data contained in this repository were recorded on 17<sup>th</sup> September 2020. Wind and wave data from Channel Light Vessel and Sandettie Light Vessel can be found in Appendix A.

Data was not available for the nearest light vessel to the trial site, the Greenwich Light Vessel, as measurements from this have not been reliably available since March 2020. The sea conditions near the trials site were probably an average of the two measurements obtained, a wave height equivalent sea state of about 3-4 and wind equivalent of sea state 5-6. However, the sea conditions in the harbour entrance channel where the measurements were conducted were much calmer, in littoral waters and also greatly affected by tidal flows. At the time they were estimated visually to be a maximum of sea state 2.

## Hardware Configuration

### Radar

The radar used for data gathering is a bespoke 76-81 GHz FMCW quasi-monostatic radar with dual receivers each with IQ output, the specification is outlined in Table I below. Details of the antenna used for Tx/Rx in all measurement are found in Table II. An image of the setup is shown in Figure 5.

| Radar Parameter                               | Value              | Units   | Comment                                                          |
|-----------------------------------------------|--------------------|---------|------------------------------------------------------------------|
| Centre Frequency, f                           | 78.5               | GHz     |                                                                  |
| Transmit Power, P <sub>t</sub>                | 13                 | dBm     | Average across band                                              |
| Bandwidth                                     | 5                  | GHz     |                                                                  |
| Chirp Duration                                | 1, 2               | ms      | Both used during<br>experimentation (see dataset<br>description) |
| PRF(PRI)                                      | 200 (5), 166.7 (6) | Hz (ms) | PRF's for 1 and 2 ms chirp<br>durations respectively             |
| ADC Sample Rate                               | 40                 | MHz     |                                                                  |
| Intermediate<br>Frequency Filter<br>Bandwidth | 10                 | MHz     |                                                                  |

#### Table I. Radar parameters

The radar is mechanically scanned and consecutive scan directions are reversed i.e. scans operate consecutively in a clockwise and then counter-clockwise manner.

Data recorded to file is the de-ramped FMCW IF signal – FFT required to form range profile. Due to the large size of raw data files they cannot all be provided directly in this repository, but may be available on request.

### Table II. Antenna Parameters

Antennas were measured (two-way) in quasi-monostatic configuration (gain is 'one-way' gain)

| Antenna Type              | Az. Beam Width | El. Beam Width | Antenna Gain                    |
|---------------------------|----------------|----------------|---------------------------------|
|                           | (Two Way)      | (Two Way)      | G <sub>t</sub> = G <sub>r</sub> |
|                           | [°]            | [°]            | [dBi]                           |
| <b>Elevation Fan Beam</b> | 1.7            | 7.2            | 30                              |

### Video

A ZED stereo video camera has been used to provide ground truth the radar measurements.



Figure 5. Quasi-monostatic 76-81 GHz FMCW radar with two receivers.

## Dataset Description

The full dataset description is found in Table II. Examples of data processed to into range profile format are included in the repository, relating to scanned file 'sea\_4' and staring file 'stare\_4', both include video ground truth.

The data is supplied as an array of complex range profiles (formed after FFT of de-ramped FMCW data), the data are stored as a MATLAB .mat array of doubles.

The data represents radar ranges from 0 m up to  $\sim$ 400 m, with range resolution of  $\sim$ 3cm (according to previously described bandwidth).

For the scanned data file, the array has 3 dimensions:

- Dimension 1: Range bin number
- Dimension 2: Chirp number within scan (angular position within FoV)
- Dimension 3: Scan number

For the staring data file, the array has 2 dimensions.

- Dimension 1: Range bin number
- Dimension 2: Chirp number

| Date:<br>16/09/2020<br>File name: time<br>recorded | Chirps<br>(per scan<br>for<br>scanning,<br>total for<br>staring) | Chirp<br>Duration<br>(ms) | Number<br>of scans | Scan<br>Rate<br>(Hz) | Collection<br>time<br>(s) | Scanned<br>field of<br>view<br>(deg.) | Notes                                                                                                                                                           |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------|---------------------------|--------------------|----------------------|---------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Sea_1: 13:43                                       | 166                                                              | 1                         | 30                 | 1                    | 30                        | 60                                    | Starts with a<br>catamaran in<br>FOV moving<br>from left to<br>right. At 15<br>seconds, the<br>catamaran<br>turns 180<br>degrees on<br>the right in<br>the FOV. |  |  |  |  |
| Sea_2: 13:56                                       | 166                                                              | 2                         | 60                 | 1                    | 60                        | 60                                    | 5 seconds<br>into scan, a<br>boat<br>travelling<br>towards land<br>(right to left)<br>producing a<br>visible wake.                                              |  |  |  |  |
| Sea_3: 14:07                                       | 166                                                              | 2                         | 60                 | 1                    | 60                        | 60                                    | Just a scan of<br>the red post<br>only against<br>sea clutter<br>after<br>repositioning<br>radar to face<br>its direction.                                      |  |  |  |  |
| Sea_4: 14:08                                       | 166                                                              | 2                         | 60                 | 1                    | 60                        | 60                                    | Scan starts<br>with a wind<br>surfer<br>travelling<br>from 50m to<br>the right<br>across the<br>FOV.                                                            |  |  |  |  |
| Sea_5: 14:10 166 2                                 |                                                                  | 2                         | 60                 | 1                    | 60                        | 60                                    | A slow boat<br>travels about<br>75m away at<br>the beginning                                                                                                    |  |  |  |  |

|              |     |   |    |     |    |    | of the scan,<br>passes behind<br>the red post.<br>Partial video<br>data for this<br>set.                                                                                                                                 |
|--------------|-----|---|----|-----|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sea_6: 14:16 | 166 | 2 | 60 | 1   | 60 | 60 | Scan starts<br>with a fast<br>boat passing<br>around 175m<br>away,<br>producing a<br>visible wake.                                                                                                                       |
| Sea_7: 14:23 | 166 | 2 | 60 | 1   | 60 | 60 | Radar turned<br>towards<br>buoys. A large<br>stationary<br>sailboat is<br>anchored<br>near the "3rd<br>buoy"<br>counting left<br>to right. A jet<br>skier is in the<br>distance<br>(about 200m<br>from eye<br>estimate). |
| Sea_8: 14:30 | 166 | 2 | 60 | 1   | 60 | 60 | Platform<br>raised at one<br>end by 2<br>inches, so the<br>radars have a<br>slightly<br>steeper<br>grazing angle.<br>Just recording<br>the buoys.                                                                        |
| Sea_9: 14:37 | 111 | 2 | 90 | 1.5 | 60 | 60 | Speed boat<br>approaches<br>FOV in the<br>last few<br>seconds of<br>the scan.                                                                                                                                            |

| Sea_10: 14:40 | 111 | 2 | 90 | 1.5 | 60 | 60 | Scan starts<br>with boat in<br>centre of FOV<br>around 200m<br>from the<br>radars,<br>travelling<br>from right to<br>left producing<br>a small wake.                                                              |
|---------------|-----|---|----|-----|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sea_11: 14:45 | 166 | 2 | 60 | 1   | 60 | 60 | Radar<br>repositioned<br>to look at<br>Hayling<br>island, whilst<br>keeping 2<br>buoys in the<br>FOV. Scan<br>contains sea<br>clutter and<br>buoys only.                                                          |
| Sea_12: 14:57 | 166 | 2 | 60 | 1   | 60 | 60 | At 32 seconds<br>a boat passes<br>the radar at a<br>range of<br>around 50m,<br>traveling<br>quite quickly<br>producing a<br>visible wake.                                                                         |
| Sea_13: 15:23 | 166 | 2 | 60 | 1   | 60 | 60 | Radar is<br>repositioned<br>to face the<br>red metal<br>pole, and<br>path of the<br>Hayling island<br>ferry.<br>Beginning of<br>the scan has<br>the ferry<br>traveling to<br>Hayling island<br>over 200m<br>away. |

| Sea_14: 15:38 | 166 | 2 | 60                              | 1 | 60 | 60 | 26 seconds<br>into the scan,<br>a jet skier<br>passes by<br>from right to<br>left in the<br>centre of the<br>channel,<br>around 175m.<br>Drives up and<br>down the<br>channel.<br>Partial video<br>data for this<br>recording. |
|---------------|-----|---|---------------------------------|---|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sea_15: 15:41 | 166 | 2 | 60                              | 1 | 60 | 60 | The jet skier<br>continues to<br>make sharp<br>turns in the<br>field of view<br>throughout<br>scan, the<br>ferry departs<br>at the end of<br>the record.<br>Partial video<br>data for this<br>set.                             |
| Sea_16: 15:42 | 166 | 2 | 59<br>recorded<br>(1<br>missed) | 1 | 60 | 60 | The ferry<br>departs and<br>travels from<br>Hayling to<br>Eastney.<br>No video data<br>for this set.                                                                                                                           |
| Sea_17: 15:52 | 166 | 2 | 59<br>recorded<br>(1<br>missed) | 1 | 60 | 60 | Jet ski in tow,<br>the jet ski<br>pulls up to<br>the shore of<br>Hayling<br>island.                                                                                                                                            |
| Sea_18: 15:55 | 166 | 2 | 58<br>recorded<br>(2<br>missed) | 1 | 60 | 60 | Jet-ski close<br>to Hayling<br>island.                                                                                                                                                                                         |

| Sea_19: 16:30  | 648   | 2 | 3   | 0.25 | 10  | 70  | Test                                                                                                                               |
|----------------|-------|---|-----|------|-----|-----|------------------------------------------------------------------------------------------------------------------------------------|
| Stare_1: 14:52 | 11136 | 2 | N/A | N/A  | ~60 | N/A | Radar is<br>positioned to<br>stare at one<br>of the buoys<br>to the right of<br>the Eastney<br>shore.                              |
| Stare_2: 14:55 | 10752 | 2 | N/A | N/A  | ~60 | N/A | Staring at the buoys still.                                                                                                        |
| Stare_3: 15:05 | 10496 | 2 | N/A | N/A  | ~60 | N/A | Staring at the<br>buoys once<br>more.                                                                                              |
| Stare_4: 15:08 | 11136 | 2 | N/A | N/A  | ~60 | N/A | 20s in, a boat<br>travelling<br>slowly passes<br>the beam,<br>producing a<br>visible wake.                                         |
| Stare_5: 15:16 | 11136 | 2 | N/A | N/A  | ~60 | N/A | The radar is<br>repositioned<br>to face the<br>red metal<br>post (but not<br>staring at the<br>post).                              |
|                |       |   |     |      |     |     | 40s in a boat<br>travels past<br>the beam<br>travelling<br>towards the<br>left, around<br>75m away.<br>Produces a<br>visible wake. |
| Stare_6: 15:18 | 10496 | 2 | N/A | N/A  | ~60 | N/A | Wind starts<br>to pick up in<br>this stare.                                                                                        |
| Stare_7: 15:21 | 11136 | 2 | N/A | N/A  | ~60 | N/A | Sea clutter<br>only stare.<br>Note a large<br>return comes<br>from the                                                             |

|                 |       |   |     |     |     |     | ground<br>clutter, could<br>be from<br>metal cages<br>that emerge<br>when tide<br>gets lower. |
|-----------------|-------|---|-----|-----|-----|-----|-----------------------------------------------------------------------------------------------|
| Stare_8: 15:26  | 11136 | 2 | N/A | N/A | ~60 | N/A | Sea clutter only stare.                                                                       |
| Stare_9: 15:28  | 10624 | 2 | N/A | N/A | ~60 | N/A | Sea clutter,<br>and ferry<br>crossing.                                                        |
| Stare_10: 16:40 | 10880 | 2 | N/A | N/A | ~60 | N/A | Sea clutter<br>only stare                                                                     |
| Stare_11: 16:42 | 10624 | 2 | N/A | N/A | ~60 | N/A | Sea clutter only stare.                                                                       |
| Stare_12: 16:45 | 10624 | 2 | N/A | N/A | ~60 | N/A | Sea clutter only stare.                                                                       |
| Stare_for_cal   | 1536  | 2 | N/A | N/A | ~10 | N/A | 18 dBsm<br>corner<br>reflector on<br>top of a<br>tripod, 8m<br>away from<br>the radar.        |
| Stare_for_cal_2 | 1792  | 2 | N/A | N/A | ~10 | N/A | 18 dBsm<br>corner<br>reflector on<br>top of a<br>tripod, 8m<br>away from<br>the radar.        |
| Scan_for_cal_2  | 166   | 2 | 10  | 1   | 10  | 20  | 18 dBsm<br>corner<br>reflector on<br>top of a<br>tripod, 8m<br>away from<br>the radar.        |
| Noise_1         | 11136 | 2 | N/A | N/A | ~60 | N/A | Staring<br>measurement<br>with RAM                                                            |

|  |  |  | covering both |
|--|--|--|---------------|
|  |  |  | transmitter   |
|  |  |  | and receiver  |
|  |  |  | antennae of   |
|  |  |  | the 79 GHz.   |
|  |  |  |               |

# Appendix A

## **Channel Light Vessel**

|   |    |    |         |        |        |           |        | Pre       | vious     | observ    | ations |        |        |        |           |           |           |           |
|---|----|----|---------|--------|--------|-----------|--------|-----------|-----------|-----------|--------|--------|--------|--------|-----------|-----------|-----------|-----------|
|   |    |    |         | $\geq$ | $\geq$ | $\bowtie$ | $\geq$ | $\bowtie$ | $\bowtie$ | $\bowtie$ | K      | $\geq$ | $\geq$ | $\geq$ | $\bowtie$ | $\bowtie$ | $\bowtie$ | $\bowtie$ |
| ľ | MM | DD | TIME    | WDIR   | WSPD   | GST       | WVHT   | DPD       | APD       | MWD       | PRES   | PTDY   | ATMP   | WTMP   | DEWP      | SAL       | VIS       | TIDE      |
|   | 00 | 17 | 1000    | -      | 28.0   | KIS       | 10     | sec       | sec<br>7  |           | 20.24  | 0.02   | 62.0   | 62.6   | 55 Q      | psu       | 11.0      | п         |
|   | 09 | 17 | 1900    | -      | 20.0   | -         | 4.9    | -         |           | -         | 30.21  | -0.03  | 03.9   | 02.0   | 00.2      | -         | 11.0      | -         |
|   | 09 | 17 | 1800    | -      | 21.0   | -         | 4.0    | -         |           | -         | 30.22  | -0.04  | 03.7   | 62.8   | 55.0      | -         | 11.0      | -         |
|   | 09 | 17 | 1700    | E      | 22.0   | -         | 6.2    | -         |           | -         | 30.23  | -0.04  | 63.7   | 62.8   | 55.0      | -         | 11.0      | -         |
|   | 09 | 17 | 1600    | ENE    | 26.0   | -         | 6.9    | -         | 1         | -         | 30.24  | -0.04  | 63.3   | 62.8   | 56.1      | -         | 5.0       | -         |
|   | 09 | 17 | 1500    | ENE    | 27.0   | -         | 7.5    | -         | 6         | -         | 30.26  | -0.03  | 63.0   | 62.8   | 56.7      | -         | 5.0       | -         |
|   | 09 | 17 | 1400    | ENE    | 27.0   | -         | 6.9    | -         | 6         | -         | 30.27  | -0.03  | 62.2   | 62.6   | 56.7      | -         | 5.0       | -         |
|   | 09 | 17 | 1300    | ENE    | 26.0   | -         | 8.2    | -         | 6         | -         | 30.28  | -0.02  | 62.8   | 62.6   | 57.0      | -         | 2.0       | -         |
|   | 09 | 17 | 1200    | ENE    | 22.9   | -         | 7.2    | -         | 7         | -         | 30.29  | -0.02  | 62.6   | 62.4   | 57.6      | -         | 2.0       | -         |
|   | 09 | 17 | 1100    | NE     | 27.0   | -         | 6.6    | -         | 7         | -         | 30.29  | -0.00  | 62.2   | 62.4   | 57.0      | -         | 5.0       | -         |
|   | 09 | 17 | 1000    | NE     | 27.0   | -         | 5.9    | -         | 7         | -         | 30.31  | +0.01  | 62.1   | 62.2   | 56.8      | -         | 5.0       | -         |
|   | 09 | 17 | 0900    | ENE    | 24.1   | -         | 7.9    | -         | 7         | -         | 30.31  | +0.04  | 62.1   | 62.4   | 57.4      | -         | 5.0       | -         |
|   | 09 | 17 | 0800    | ENE    | 31.1   | -         | 5.9    | -         | 7         | -         | 30.30  | +0.04  | 61.9   | 62.6   | 57.0      | -         | 5.0       | -         |
|   | 09 | 17 | 0700    | ENE    | 25.1   | -         | 5.6    | -         | 7         | -         | 30.29  | +0.01  | 61.2   | 62.6   | 57.0      | -         | 5.0       | -         |
|   | 09 | 17 | 0600    | ENE    | 33.0   | -         | 5.6    | -         | 7         | -         | 30.27  | -0.02  | 61.5   | 62.8   | 57.4      | -         | 5.0       | -         |
|   | 09 | 17 | 0500    | ENE    | 31.1   | -         | 6.6    | -         | 7         | -         | 30.27  | -0.04  | 62.2   | 62.8   | 57.9      | -         | 5.0       | -         |
|   | 09 | 17 | 0400    | NE     | 25.1   | -         | 3.9    | -         | 6         | -         | 30.29  | -0.03  | 63.0   | 62.8   | 59.0      | -         | 5.0       | -         |
|   | 09 | 17 | 0300    | NE     | 24.1   | -         | 3.3    | -         | 5         | -         | 30.28  | -0.03  | 63.1   | 62.8   | 59.4      | -         | 5.0       | -         |
|   | 09 | 17 | 0200    | ENE    | 27.0   | -         | 2.0    | -         | 5         |           | 30.30  | +0.00  | 63.3   | 62.8   | 59.5      | -         | 5.0       | -         |
|   | 09 | 17 | 0100    | NE     | 19.0   | -         | 1.3    | -         | 8         | -         | 30.31  | +0.02  | 63.9   | 62.6   | 60.8      | -         | 5.0       | -         |
|   | 09 | 17 | 0000    | NE     | 22.0   | -         | 1.3    | -         | 9         |           | 30.31  | +0.03  | 64.4   | 62.6   | 60.3      | -         | 5.0       | -         |
|   | 09 | 16 | 2300    | NNE    | 18.1   | -         | 1.3    | -         | 9         |           | 30.29  | +0.04  | 64.9   | 62.6   | 59.9      |           | 11.0      |           |
|   | 00 | 16 | 2200    | NNE    | 14.0   |           | 1.6    |           | 6         |           | 30.20  | +0.05  | 64.0   | 62.6   | 60.1      |           | 5.0       |           |
|   | 09 | 16 | 2100    | NE     | 89     |           | 1.0    |           | 8         | -         | 30.28  | +0.04  | 64.2   | 63.0   | 60.1      |           | 2.0       |           |
|   |    |    | - 1 M M |        | 1.1.1  | _         |        | _         |           |           |        |        |        | 100.00 |           | _         |           | _         |

### Sandettie Light Vessel

|    |    |       |      |        |        |        | Pre    | vious  | observ | ations |       |      |      |      |        |              |           |
|----|----|-------|------|--------|--------|--------|--------|--------|--------|--------|-------|------|------|------|--------|--------------|-----------|
|    |    |       |      | $\geq$ | $\geq$ | $\geq$ | $\geq$ | $\geq$ | $\geq$ |        |       |      |      |      | $\geq$ | $\mathbb{K}$ | $\bowtie$ |
| MM | DD | TIME  | WDIR | WSPD   | GST    | WVHT   | DPD    | APD    | MWD    | PRES   | PTDY  | ATMP | WTMP | DEWP | SAL    | VIS          | TIDE      |
|    |    | (GMT) |      | kts    | kts    | ft     | sec    | sec    |        | in     | in    | ۳F   | ٩F   | ۴F   | psu    | nmi          | ft        |
| 09 | 17 | 1900  | NE   | 22.0   | -      | 3.3    | -      | 5      | -      | 30.29  | -0.02 | 63.5 | 64.4 | 50.9 | -      | 11.0         | -         |
| 09 | 17 | 1800  | NE   | 21.0   | -      | 3.3    | -      | 6      | -      | 30.29  | -0.04 | 62.8 | 64.6 | 49.6 | -      | 27.0         | -         |
| 09 | 17 | 1700  | NE   | 22.0   | -      | 3.3    | -      | 6      | -      | 30.29  | -0.04 | 62.1 | 64.8 | 52.0 | -      | 11.0         | -         |
| 09 | 17 | 1600  | NNE  | 22.9   | -      | 3.9    | -      | 6      | -      | 30.32  | -0.04 | 61.7 | 64.8 | 50.5 | -      | 11.0         | -         |
| 09 | 17 | 1500  | NE   | 24.1   | -      | 3.9    | -      | 6      | -      | 30.32  | -0.04 | 62.2 | 64.8 | 49.8 | -      | 11.0         | -         |
| 09 | 17 | 1400  | NE   | 24.1   | -      | 3.6    | -      | 6      | -      | 30.34  | -0.04 | 61.3 | 64.6 | 50.0 | -      | 11.0         | -         |
| 09 | 17 | 1300  | ENE  | 22.9   | -      | 3.6    | -      | 7      | -      | 30.35  | -0.01 | 61.3 | 64.8 | 50.2 | -      | 11.0         | -         |
| 09 | 17 | 1200  | ENE  | 22.9   | -      | 3.6    | -      | 7      | -      | 30.37  | -0.01 | 61.3 | 64.6 | 51.1 | -      | 11.0         | -         |
| 09 | 17 | 1100  | ENE  | 25.1   | -      | 3.9    | -      | 6      | -      | 30.38  | -0.00 | 61.3 | 64.2 | 52.5 | -      | 11.0         | -         |
| 09 | 17 | 1000  | NE   | 25.1   | -      | 3.9    | -      | 6      | -      | 30.37  | +0.00 | 61.0 | 64.0 | 51.1 | -      | 11.0         | -         |
| 09 | 17 | 0900  | ENE  | 28.0   | -      | 4.3    | -      | 6      | -      | 30.38  | +0.02 | 61.0 | 64.0 | 50.4 | -      | 11.0         | -         |
| 09 | 17 | 0800  | NE   | 26.0   | -      | 3.9    | -      | 6      | -      | 30.38  | +0.03 | 61.2 | 64.2 | 51.3 | -      | 11.0         | -         |
| 09 | 17 | 0700  | NE   | 25.1   | -      | 3.9    | -      | 6      | -      | 30.37  | +0.03 | 61.2 | 64.2 | 51.6 | -      | 11.0         | -         |
| 09 | 17 | 0600  | NE   | 20.0   | -      | 3.9    | -      | 6      | -      | 30.36  | +0.01 | 61.2 | 64.4 | 52.2 | -      | 11.0         | -         |
| 09 | 17 | 0500  | NE   | 21.0   | -      | 4.6    | -      | 6      | -      | 30.35  | -0.01 | 61.5 | 64.4 | 52.7 | -      | 11.0         | -         |
| 09 | 17 | 0400  | NE   | 21.0   | -      | 4.9    | -      | 6      | -      | 30.34  | -0.01 | 60.1 | 64.6 | 51.8 | -      | 5.0          | -         |
| 09 | 17 | 0300  | NE   | 25.1   | -      | 4.9    | -      | 6      | -      | 30.35  | -0.01 | 62.2 | 64.6 | 54.0 | -      | 11.0         | -         |
| 09 | 17 | 0200  | NE   | 27.0   | -      | 4.9    | -      | 7      | -      | 30.37  | +0.01 | 62.4 | 64.4 | 54.5 | -      | 5.0          | -         |
| 09 | 17 | 0100  | NE   | 24.1   | -      | 4.6    | -      | 7      | -      | 30.35  | +0.03 | 63.0 | 64.4 | 55.8 | -      | 5.0          | -         |
| 09 | 17 | 0000  | NE   | 26.0   | -      | 4.9    | -      | 7      | -      | 30.36  | +0.05 | 62.4 | 64.4 | 55.9 | -      | 5.0          | -         |
| 09 | 16 | 2300  | NE   | 25.1   | -      | 4.9    | -      | 6      | -      | 30.35  | +0.05 | 63.0 | 64.4 | 57.2 | -      | 5.0          | -         |
| 09 | 16 | 2200  | ENE  | 25.1   | -      | 5.2    | -      | 6      | -      | 30.32  | +0.05 | 63.0 | 64.4 | 58.1 | -      | 5.0          | -         |
| 09 | 16 | 2100  | NE   | 24.1   | -      | 4.6    | -      | 5      | -      | 30.31  | +0.06 | 61.7 | 64.6 | 57.4 | -      | 5.0          | -         |
| 09 | 16 | 2000  | NNE  | 22.0   | -      | 3.9    | -      | 5      | -      | 30.29  | +0.06 | 63.7 | 64.8 | 59.5 | -      | 5.0          | -         |
|    |    |       |      |        |        |        |        | -      |        |        |       |      |      |      |        |              |           |